Adaptively Secure Two-Party Computation from Indistinguishability Obfuscation
نویسندگان
چکیده
We present the first two-round, two-party general function evaluation protocol that is secure against honest-but-curious adaptive corruption of both parties. In addition, the protocol is incoercible for one of the parties, and fully leakage tolerant. It requires a global (non-programmable) reference string and is based on one way functions and general-purpose indistinguishability obfuscation with sub-exponential security, as well as augmented non-committing encryption. A Byzantine version of the protocol, obtained by applying the Canetti et al. [STOC 02] compiler, achieves UC security with comparable efficiency parameters, but is no longer incoercible.
منابع مشابه
Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation
Adaptively secure Multi-Party Computation (MPC) first studied by Canetti, Feige, Goldreich, and Naor in 1996, is a fundamental notion in cryptography. Adaptive security is particularly hard to achieve in settings where arbitrary number of parties can be corrupted and honest parties are not trusted to properly erase their internal state. We did not know how to realize constant round protocols fo...
متن کاملAdaptively Secure Multi-Party Computation from LWE (via Equivocal FHE)
Adaptively secure Multi-Party Computation (MPC) is an essential and fundamental notion in cryptography. In this work, we construct Universally Composable (UC) MPC protocols that are adaptively secure against all-but-one corruptions based on LWE. Our protocols have a constant number of rounds and communication complexity dependant only on the length of the inputs and outputs (it is independent o...
متن کاملOn Adaptively Secure Multiparty Computation with a Short CRS
In the setting of multiparty computation, a set of mutually distrusting parties wish to securely compute a joint function of their private inputs. A protocol is adaptively secure if honest parties might get corrupted after the protocol has started. Recently (TCC 2015) three constant-round adaptively secure protocols were presented [CGP15, DKR15, GP15]. All three constructions assume that the pa...
متن کاملIndistinguishability Obfuscation: From Approximate to Exact
We show general transformations from subexponentially-secure approximate indistinguishability obfuscation (IO) where the obfuscated circuit agrees with the original circuit on a 1/2 + fraction of inputs on a certain samplable distribution, into exact indistinguishability obfuscation where the obfuscated circuit and the original circuit agree on all inputs. As a step towards our results, which i...
متن کاملA Punctured Programming Approach to Adaptively Secure Functional Encryption
We propose the first construction for achieving adaptively secure functional encryption (FE) for polysized circuits (without complexity leveraging) from indistinguishability obfuscation (iO). Our reduction has polynomial loss to the underlying primitives. We develop a “punctured programming” approach to constructing and proving systems where outside of obfuscation we rely only on primitives rea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014